当前位置:首页 > 实用范文

九年级上册数学公式【新版多篇】

时间:2025-01-15 11:11:03
九年级上册数学公式【新版多篇】[本文共6559字]

【编辑】九年级上册数学公式【新版多篇】为的会员投稿推荐,但愿对你的学习工作带来帮助。

初三数学公式:人教版九年级上册数学公式汇总 篇一

第二十一章二次根式

1、一个正数有两个平方根;在实数范围内,负数没有平方根。2、一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。3a(a≥0)是一个非负数。当a为带分数是,要把a改写成假分数,即24、二次根式的性质:(a)2=a(a≥0),a=a(a≥0)

5、用基本运算符号(基本运算符号包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式。6、二次根式的乘法规定:a×b=ab(a≥0,b≥0)

ab

ab

2

23

5要写成

83

5

7、二次根式的除法规定:=(a≥0,b>0)

8、最简二次根式条件:①被开方数不含字母;②被开方数中不含能开得尽方的因数或因式。9、二次根式加减法法则:先将二次根式化成最简二次根式,再合并同类二次根式10、同类二次根式即指被开方数相同的最简二次根式

11、平方差公式:a2-b2=(a+b)(a-b)完全平方公式:(a?b)2=a2?2ab+b212、二次根式除法没有分配率,任何非零数的零次幂都是1,(ab)m=ambm

第二十二章一元二次方程

1、等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。

2、一元二次方程的一般形式:ax+bx+c=0(a≠0),其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

3、使方程左右两边的值相等的未知数的值,叫做这个方程的解,一元二次方程的解也叫一元二次方程的根。

4、解一元二次方程的方法:(1)

直接开方法:如果方程能化成x=p或(mx+n)=p(p≥0)的形式,那么可得x=?

p

2

2

2

2

p

或mx+n=?

(2)配方法:步骤:第一步,把方程化成一般形式(二次项系数是1);第二步,把常

数项移到方程的右边;第三步,配方,方程的左右两边同时加上一次项系数一半的平方;第四步,把方程左边写成含有未知数的代数式的平方的形式,即(x-k)=h(h≥0);第五步,用直接开平方法解方程。(3)

2

2

公式法:Δ=b-4ac叫做方程ax+bx+c=0(a≠0)根的判别式。当Δ>0时,方程

2

22

ax+bx+c=0(a≠0)有两个不相等的实数根;当Δ=0时,方程ax+bx+c=0(a≠0)有两个相

等的实数根;当Δ<0时,方程ax2+bx+c=0(a≠0)无实数根。当Δ≥0时,式子

?b?

b?4ac2a

2

x=

叫做一元二次根式ax2+bx+c=0(a≠0)的求根公式。

(4)

因式分解法:左端能够因式分解成(a1x+b1)(a2x+b2)=0,根据乘法中一个数同

零相乘积是零的性质,可得(a1x+b1)=0或(a2x+b2)=0,进而求出方程的解。5、一元二次方程的根与系数的关系:方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-ba

,x1x2=

ca

6、一元二次方程解实际应用题的步骤:(1)审题;(2)设未知数;(3)列代数式;(4)列方程;(5)解方程;(6)检验;(7)写出答案。①平均增长率方面:平均增长率公式:a(x+1)2=b;降低率公式:a(x-1)2=b(a为起始量,b为终止量,n为增长的次数及降低的次数,x为平均增长率及平均降低率)②利润方面:总利润=总销售额-总成本;总利润=单个利润×总销售量

③与几何图形有关的:涉及三角形的三边关系,三角形全等,面积的计算,体积的计算,勾股定理等

④行程方面:路程=速度×时间

第二十三章旋转

1、平移是指在平面内,将一个图形上的所有点按照某个方向作相同距离的移动。性质:对应线段平行且相等;对应角相等;对应点所连接的线段平行且相等。轴对称图形是指如果一个图形沿着一条直线对折后两部分完全重合。

旋转是指在平面内,把一个图形绕着某一点转动一个角度的图形变换;在旋转过程中始终保持固定不动的定点叫旋转中心;图形绕一个定点沿某个方向转动的角叫旋转角。2、旋转性质:(1)只改变位置,不改变图形的大小及形状;(2)任意一对对应点与旋转中心所连线段的夹角都相等;(3)对应点到旋转中心的距离相等;(4)图形上的每一个点都沿相同的方向旋转相同都角度。

3、旋转作图的步骤:第一步,确定旋转角的大小和方向;第二步,确定每对对应点;第三步,确定旋转后的图形。一般情况下,旋转角小于360度。

4、把一个图形绕着某一点旋转180度,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,

5、全等的图形不一定是中心对称,而中心对称的两个图形一定全等。中心对称有一个对称中心,绕中心旋转180度,旋转后与另一个图形重合;轴对称有一条对称轴,图形对称折叠,折叠后与另一个图形重合。6、中心对称性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形。

7、把一个图形绕着某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。线段、平行四边形是中心对称图形。(1)既是轴对称又是中心对称图形的有:长方形、正方形、圆、菱形等(2)只是轴对称的有:角、五角星、等腰

三角形、等边三边形、等腰梯形等(3)只是中心对称的有:平行四边形等(4)既不是轴对称又不是中心对称图形的有:不等边三角形、非等腰梯形等。

8、两个点关于原点对称时,它们的坐标符号相反,即P(x,y)关于原点的对称点为P'(-x,-y)

第二十四章圆1、(1)点和圆的位置关系:点P在圆外?d>r;点P在圆上?d=r;点P在圆内?d(2)不在同一直线的三个点确定一个圆。(3)经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫这个三角形的外心。任意三角形都有且只有一个外接圆,圆的内接三角形有无数个。(3)假设命题的结论不成立,由此经过推理得出矛盾,有矛盾断定所做的假设不正确,从而得到原命题成 ……此处隐藏1734个字……腰的中点与底平行的直线,必平分另一腰

80推论2经过三角形一边的中点与另一边平行的直线,必平分第

三边

81三角形中位线定理三角形的中位线平行于第三边,并且等于它

的一半

82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的

一半L=(a+b)÷2S=L×h

83(1)比例的基本性质如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86平行线分线段成比例定理三条平行线截两条直线,所得的对应

线段成比例

87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比

88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么

这条直线平行于三角形的第三边

89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形

三边对应成比例

90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形

与原三角形相似

91相似三角形判定定理1两角对应相等,两三角形相似(ASA)

92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

新起点教育94判定定理3三边对应成比例,两三角形相似(SSS)

95定理如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96性质定理1相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97性质定理2相似三角形周长的比等于相似比

98性质定理3相似三角形面积的比等于相似比的平方

99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理一条弧所对的圆周角等于它所对的圆心角的一半

117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

新起点教育119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线L和⊙O相交d<r

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理圆的切线垂直于经过切点的半径

124推论1经过圆心且垂直于切线的直线必经过切点

125推论2经过切点且垂直于切线的直线必经过圆心

126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理弦切角等于它所夹的弧对的圆周角

129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离d>R+r②两圆外切d=R+r

③两圆相交R-r<d<R+r(R>r)

④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)

136定理相交两圆的连心线垂直平分两圆的公共弦

137定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pn/2p表示正n边形的周长

142正三角形面积√3a/4a表示边长

你也可以在搜索更多本站小编为你整理的其他九年级上册数学公式【新版多篇】范文。

《九年级上册数学公式【新版多篇】[本文共6559字].doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式